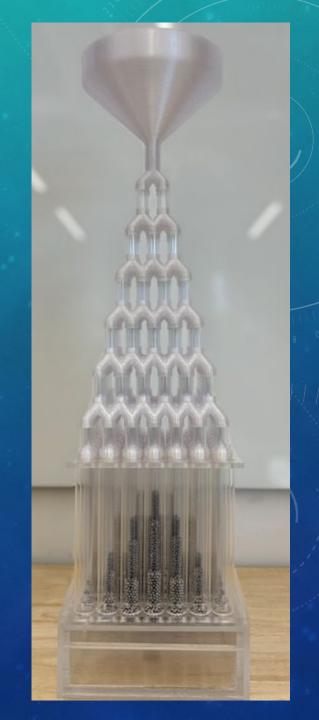

3D GALTON BOARD

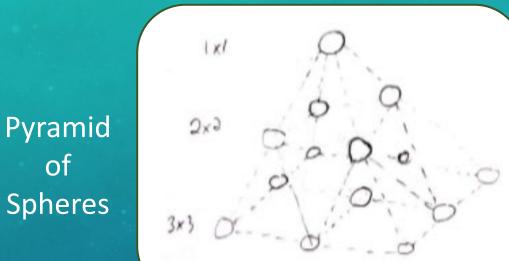
OMAR ALMUSAWA, DREW HOLOK, JOE KRIVITSKY, JACOB LEEK, RYAN MATHEWS


DEC. 15TH, 2023

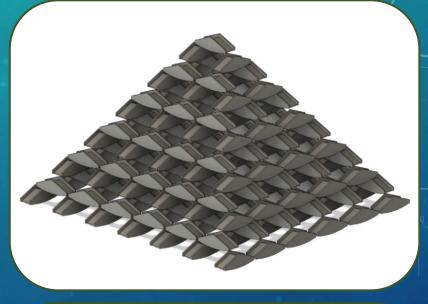
INTRODUCTION TO THE 3D GALTON BOARD

• What defines a successful 3D Galton board?

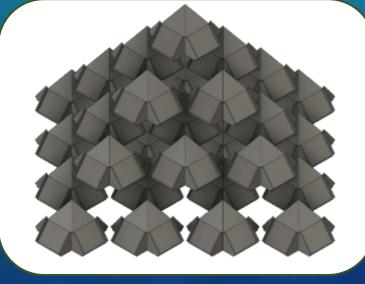
- Teaches statistics
- Shows a 3D bivariate binomial distribution
- Good demonstration device to help people learn about the math behind the board
- Function resembles z = f (x , y)
 - Models two independent variables
 - x and y axes show the variables
 - z axis shows the probability

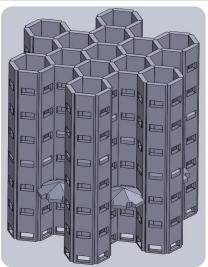


QFD & TECHNICAL REQUIREMENTS

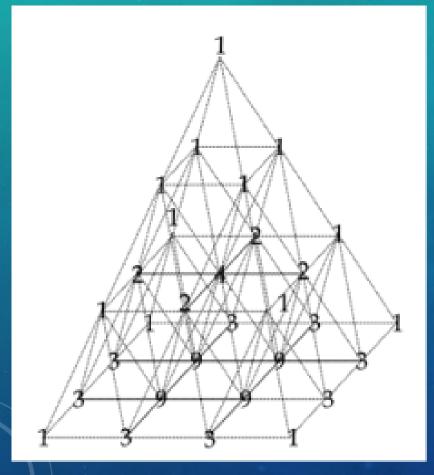

					\langle			+		Quality Function Deployment	160 170 1	
			\triangle	Д	Д	Ă	<u> </u>	X	A	Targets	Technical Requirement	Priority Ranking
		Technical Requirements	ials		2	width	aterial	Ę			Peg spacing	1
			mate		Tray Removability	Funnel entrance	Sturdiness of materials	Manufacturability	d size	Correlations:	Tray removability	2
			tion of	Peg space	Remo	nel en				 ⊕ Strong Positive + Positive 	Sturdiness of materials	3
Customer Priority					⊖ Strong Negative	Funnel entrance width	4					
		40	\downarrow	0	1	0	1	1	0	– Negative	Bead size	5
nts	Resembles Normal Distribution	10	•	•	••	•			•		Manufacturability	6
me	Easy to reload beads	9	0		••	0	0	0	\odot		Wanalacturability	0
lire	Lightweight/Compact	5.33	0				•	•		Relationships:	Friction of materials	7
Requirements	Aesthetically Pleasing	9		0				\odot	\odot	•• Strongest= 9	the particular second second	
	Durable	6					••	•		• Strong= 3		
Customer	Beads Cascade without streaming	9.33	\odot	••		•		0	\odot	 ● Fair= 1 ○ Weak= 0 		
C	Distribution visible from all sides	9.33	0	\odot		۲		\odot	0			
	Importance Rating 19 123 81 67 70 52 57 Σ (Priority X Relationship) Regulated to preserve whole #						70	52	57			

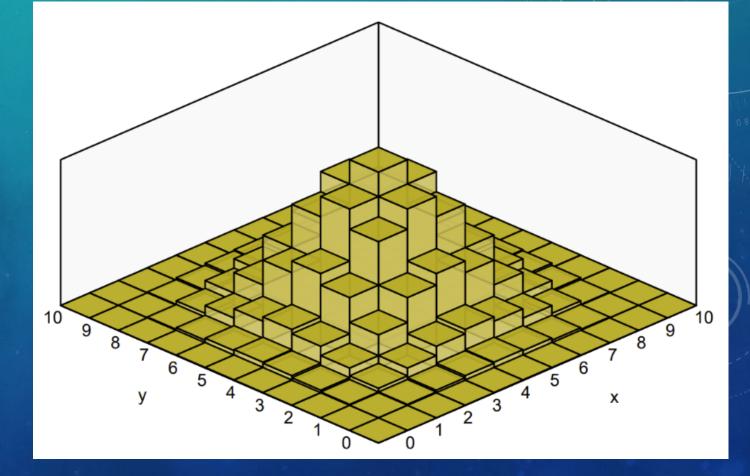
2(Priority X Relationship) Rounded to nearest whole #


(INITIAL) DESIGN ITERATIONS


Pyramid of 2-Way Ramps

Pyramid of 4-Way Ramps




Honeycomb Design

MATHEMATICAL MODELS

Pascal's Square-Based Pyramid Bivariate Binomial Distribution

DECISION MATRIX

Requirements	Designs							
	Honeycomb	4-way ramp	2-way ramp	Spheres				
Ability to Cascade Beads	3	5	5	1				
Ease to make	1	4	5	3				
Beads make up 3D distribution	3	5	4	2				
Pegs able to be supported	4	5	5	1				
No Bead Escape	5	4	4	1				
No Bead Jam	2	4	4	4				
Cost effectiveness	4	4	4	4				
Tolerance Resistance	1	3	3	1				
Ranking	3	1	2	4				

(4-WAY RAMP) DESIGN ITERATIONS

Open 4-Way Ramp

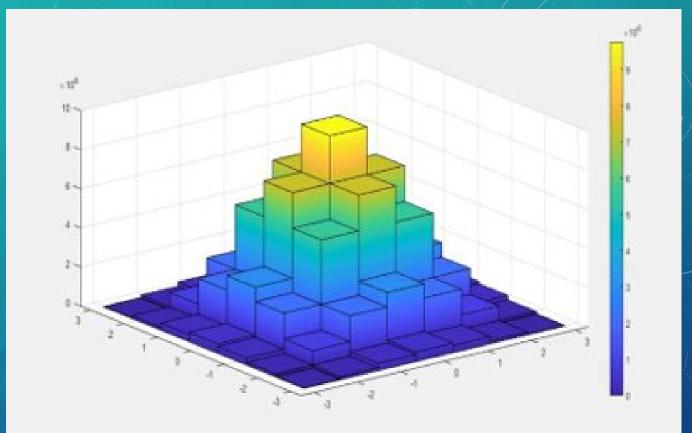
Shielded 4-Way Ramp

Ramp-based sorting manifold

FMEA

Critical failure mode:

Fatigue/wear of manifolds


- Severe- Skews final distribution
- Occurrence is uncertain
- Detection is difficult
 - Known properties of material is the only control

Testing suggests that the other failure modes are unlikely to occur

#	Function Affected	Potential Failure Modes	Potential Failure Effects	Potential Causes of Failure	s	0	D	RPN	
1	Flow of beads through sorting mechanism	Significant bead jamming	Skewed/incomplete distribution of beads	Beads are too large Adapter/PETG tube diameter too small	7	2	5	70	Ē
		Minor bead jamming	Loose beads remain in sorting mechanism after use	Sharp corners/bends within sorting mechanism	5	3	6	90	
			Distribution is marginally skewed	Unpredictable movement of beads due to collisions					· · · · · · · · · · · · · · · · · · ·
2	Visibility of bead behavior	User cannot see the complete 3D distribution of beads	Board is less aesthetically pleasing to user	High concentration of cylindrical collecting bins	6	2	8	96	
			Educational value/purpose of board is diminished						//////// 00τ 06
		User cannot see the sorting process	Board is less aesthetically pleasing to user	Cloudy/opaque filament used for adapters	6	2	8	96	
3	Structural stability of board	Failure at base of bead reservoir	Collapse of bead reservoir/beads spill	Excessive weight of beads	8	2	4	64	
				Insufficient/improper design of structure					
		Fatigue/wear of the manifolds	Failure to sort correctly	Small tolerance within manifold structure	7	7	7	343	
				Continuous use					••••••••
		Failure at tube- manifold	Collapse of the sorting structure	Not enough glue	8	2	4	64	
		connections		Insufficient glue strength					

SIMULATION RESULTS

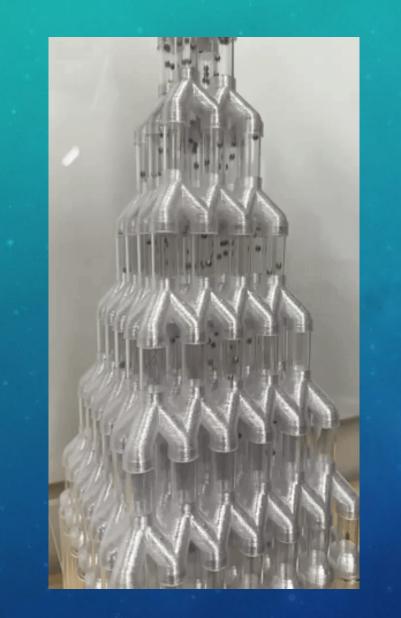
- MATLAB CODE
- 100 million beads
- 6 Layers of Pegs
- 7x7 Bin Array
- Drops the Beads Individually
- Matches Bivariate Binomial Model
- 9.7 % of Beads Land in Center Bin
- 0.02 % of Beads Land in Corners

Percentage of	f Beads Th	at Land in	Each Bin		500 EX7887 600-0	
0.0244	0.1468	0.3662	0.4890	0.3671	0.1458	0.0246
0.1464	0.8794	2.1974	2.9301	2.1948	0.8785	0.1462
0.3651	2.1979	5.4922	7.3192	5,4946	2.1999	0.3664
0.4876	2.9326	7.3273	9.7646	7.3266	2.9295	0.4880
0.3663	2.1980	5.4915	7.3239	5.4916	2.1979	0.3656
0.1463	0.8790	2.1979	2.9293	2.1980	0.8787	0.1470
0.0243	0.1458	0.3646	0.4897	0.3652	0.1465	0.0246

FINAL DESIGN/METHODOLOGY

Hopper

Display Bins


 Side angles and aperture diameter decrease likelihood of bead jamming

- Completely enclosed
- Tight tolerances & overlap
- Channel diameter and pitch reduce bead jamming chance
- Clarity, clarity, clarity

- Bead count vs. lensing
- Quick bead dump and reload

EVERYTHING LOOKS BETTER IN SLOW MOTION

TESTING

- Beads flow Without Jamming
 - Verified by have the beads flow through multiple times.
- Distribution Accuracy
 - Verified the Distribution to the MATLAB simulation.
- Layer Testing
 - Verified with MATLAB simulation.

5 Layers: 500 beads 6X6 bins

MATLAB Code:

0	3	4	13	2	1				
4	8	23	25	9	4				
6	29	47	48	21	5				
1	18	49	54	30	2				
2	10	25	27	12	1				
0	2	9	4	2	0				

Test Result:

0	2	10	5	1	0
3	11	32	20	14	4
5	24	49	49	30	5
1	30	54	42	23	2
3	12	21	26	7	2
0	3	5	2	3	0

RECOMMENDATIONS

- Manufacturing Processes: Explore automated machining methods with advanced capabilities to replace manual fabrication and assembly, thereby significantly reducing labor and production time for manufacturing 3D Galton Boards.
- Improve Component Fabrication: Investigate faster and cost-effective fabrication methods as alternatives to 3D printing, ensuring reliable production of components without extensive delays.
- **Materials:** Conduct research to identify a reliable and cost-effective supplier for component materials, optimizing the overall cost and quality of the 3D Galton Boards.

CONCLUSION

- Project Achievement: Successful completion of the project phases, including design, 3D modeling, and printing, achieving the educational goals and sponsor's expectations. To the best of the team knowledge, it is the first time in history of the world that a physical 3D Galton board has been built.
- **Collaboration:** The collaboration with the sponsor was key in directing the project and ensuring the 3D Galton board's practicality in real-world scenarios. The partnership highlighted the project's relevance and the team's commitment to creating an educational tool that simplifies statistical concepts.
- **Gratitude:** The team expresses gratitude for the guidance provided by the instructor, Prof. John Stang, and the sponsors, Prof. Peter Schubert, Mark Hebner, Philip Poissant, and Art Forster. The project's success is in part a result of their dedication and hard work.

REFERENCES

Acrylic vs. polycarbonate. ACME Plastics, Inc. (n.d.). <u>https://www.acmeplastics.com/acrylic-vs-polycarbonate</u>

- Ahmed, J., & Chumley, T., & Cook, S., & Cox, C., & Grant, H., & Petela, N., & Rothrock, B., & Xhafaj, R. (2022). Dynamics of the no-slip Galton board. https://arxiv.org/pdf/2208.07790.pdf
- Chernov, N., & Dolgopyat, D. (2009). The Galton board limit theorems and recurrence. Journal of the American Mathematical society, 22(3), 821-858. https://www.ams.org/journals/jams/2009-22-03/S0894-0347-08-00626-7/S0894-0347-08-00626-7.pdf
- Dikov, Dobromir. (2021). Intro to Probability Distributions in Financial Modeling. Magnimetrics, magnimetrics.com/introduction-to-probability-distributions-in-financial-modeling/.
- Friction friction coefficients and calculator. Engineering ToolBox. (n.d.). https://www.engineeringtoolbox.com/friction-coefficients-d 778.html
- Gilden, D., & Proffitt, D. (1989). Understanding collision dynamics. *Journal of Experimental Psychology: Human Perception and Performance*, 15(2), 372-383. <u>https://psycnet.apa.org/record/1989-31786-001?doi=1</u>
- Hebner, M. (n.d.). Galton Board. https://www.galtonboard.com/
- Qianli, Z. (2022). Information dimension of Galton board. Fractals, 30(4). https://www.worldscientific.com/doi/epdf/10.1142/S0218348X22500797
- PJ. (2022, June 24). The Plastic People. Plastics Cut to Size & Shape. https://www.theplasticpeople.co.uk/blog/polycarbonate-vs-acrylic/
- Spurdle, A. (2021). Bivariate probability distributions. https://rdrr.io/cran/bivariate/f/inst/doc/bivariate.pdf
- Vreken, D. (2015). Pascal's pyramids. *Pascal's pyramids*. <u>https://lostmathlessons.blogspot.com/2015/03/pascals-pyramids.html#:~:text=Square%2DBased%20Pascal's%20Pyramid&text=This%20means%20the%20first%20layer%20has%20one%20number%20(a%20square,side)%2C%20and%20s o%20on</u>

Xometry, T. (2023, October 26). PETG vs. PLA: Differences and comparison. Xometrys RSS. https://www.xometry.com/resources/3d-printing/petg-vs-pla-3d-printing/