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The quincunx was invented by Sir Francis Galton in 1873 to demon- 
strate binomial distributions. During the last 125 years it has been 
used to illustrate the laws of the binomial and the normal distri- 
bution. In the first part of this paper we describe the historical 
background of Galtons invention and take a look at the discoveries 
he got from it. The second part of this paper discusses the mathe- 
matical background of the quincunx. We discuss the various limit 
theorems which explain the phenomena observable by this appara- 
tus. 1 

1 History 

1 .1  M e t e o r o l o g i s t ,  G e o g r a p h e r  a n d  E u g e n i c i s t  

Sir Francis Gal ton  was born  on February  16, 1822 in Sparkbrook ,  
England,  as one of  nine children. Following his fathers order  he first 
s tud ied  medicine,  later on he s tudied mathematics .  Because of  his fa thers  
dea th  and the  result ing inheri tance he was able to give up  his s tudies.  
Instead,  he tu rned  to scientific explorat ion tours. For his exp lora t ion  of  

1This work was supported by DFG. 
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Africa he was awarded the gold medal of the Royal Geographical Society. 
His interests then turned towards statistical aspects of meteorology 
where he tried to develop methods to analyse and forecast the weather. 
This includes first steps for the use of graphical methods to analyse 
multivariate data. 

The publication of The Origin o f  Species (Darwin 1859) by his cousin 
Charles Darwin (1809-1882) influenced his interests. He lost his interest 
in geography and meteorology and turned to heredity. Additionally, he 
worked on anthropology, sociology and various other fields. Notably he 
invented the identification of individuals through fingerprints. In hered- 
ity, his main interest was the improvement of mankind by selection of 
reproduction. For this, he invented the expression eugenics. Later his 
friend Karl Pearson (1857-1936) wrote: 

"We see that his researches in heredity, in anthropometry, in psy- 
chometry and statistics, were not independent studies; they were all 
auxiliary to his main object, the improvement in the race of man." 
(quoted according to David (1987, p. 360)) 

In 1904 he founded the Galton Laboratory at the University College, 
London, where he had been appointed as professor for applied mathe- 
matics. The Galton Laboratory developed from Galtons Eugenic Record 
Office and Karl Pearsons Biometric Laboratory. 

In 1909 Galton was knighted. He died on January 17, 1911 in Surrey, 
England. 

Even if some of his views were refuted by the work of Gregor Mendel 
(1822-1884), which became known only in the 20th century, and even 
if eugenic effort can easily be abused and perverted, Galton yet was 
an outstanding scientific pioneer. Characteristical for Galtons studies 
of heredity was his statistical approach, following the example of the 
Belgian statistician Adolphe Quetelet (1796-1874), who first took 
anthropological measures and fitted normal curves to this data. 

Like Quetelet, Galton tried to measure talent. Later he tried to show 
that talent is inherited. So he developed the idea of regression, which 
he published in Hereditary Genius (Galton 1869) and pursued for 20 
years. Galton was fascinated by the very curious theoretical law of 
deviation from an average (Galton 1908) in biological and intelligence 
measurement data. Following Quetelet he suggested that the possibility 
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to fit a curve to d a t a  could be considered as a test: do the  d a t a  (e. g. 
height of  different  races) belong to one group or have they  to be regarded  
as different (for each race)? His main  theme  was not  to discover th ings  
in common bu t  to find the  differences and the  heredi ty  of those differences. 

Galton worked out  methods  for scaling: If  d a t a  of the same species 
can be represented  by a normal  dis tr ibut ion and  if the uni t  of  one 
species can  be shown by measurable  quanti t ies (as s ta ture  or exam-  
ination results)  which follow such a curve - if therefore on the  basis 
of  measurable  quant i t ies  a species can be identified as re la ted  - t h e n  
the  process can be reversed relating to quanti t ies  which are difficult to 
unders tand .  A qual i tat ive variable as e.g. intelligence, which at  best  is 
ordinal  scaled, will follow a normal  dis t r ibut ion if the  da t a  come f rom 
a single popula t ion.  Based on tha t  Gal ton worked out  the  Statistics by 
intercomparison (Gal ton 1875): The  da t a  are sor ted by quan t i ty  and  are  
fi t ted to the  inverse of  a normal  dis tr ibut ion funct ion (quantile funct ion) ,  
so tha t  e.g.  the  median  is by 0 and the  upper  quart i le  is by I (see Fig. 1). 
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Figure 1: 
21 observations are sorted by quantity and assigned to the inverse of  a 
suitable normal distribution function in equidistant steps, so that the 

median xo,5 is by 0 and the upper quantile x0,75 is by 1. 

This m e t h o d  grew to the  most used (and most abused) m e t h o d  of  scaling 
of psychological tests,  even though this analogical conclusion - the  scale 
is suited to the  measurement  of talent,  because it is sui ted to the  mea-  
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surement  of height - is shaky. Galton used it to give general s tatements  
about  the abilities of different races, which corresponded to the prevailing 
prejudice of tha t  time. 

1 .2  T h e  i n v e n t i o n  o f  t h e  q u i n c u n x  

Galton's  passion was the normal dis t r ibut ion and so he developed an 
ins t rument  to illustrate it - a device, which generates a histogram which 
is similar to the  normal  distribution. It  was most  likely produced in 
1873 by a company called Tisley & Spiller and  was used by Galton as 
teaching aids, e.g. for a lecture at the Royal Society on February 27, 1874. 

In Natural  Inheritance (Galton 1889), which contains many of his scien- 
tific results from 1874 to 1889 and deals wi th  the  compatibi l i ty of heredity 
and the law of errors, Galton gave a detailed descript ion of his device and 
called it "quincnn• This expression is borrowed from agriculture, where 
it is used to describe the  cultivation of fruit trees in equidistant  lines al- 
ternately "at  gap". Also any arrangement of five objects like spots on 
a die with one in each corner and one in the middle  is called quincunx 
(Posten 1986). This te rm became a synonym for the  Galton board. 

"I shall now illustrate the origin of the Curve of Frequency, by means 
of an apparatus shown in Fig. 7 [see Fig. 2], that mimics in a very 
pretty way the conditions on which Deviation depends. It is a frame 
glazed in front, leaving a depth of about a quarter of an inch behind 
the glass. Stripes are placed in the upper part to act as a funnel. Be- 
low the outlet of the funnel stand a succession of rows of pins struck 
squarely into the backboard, and below these again are series of ver- 
tical compartments. A charge of small shots is enclosed. When the 
frame is held topsey-turvy, all of the shots runs to the upper end; 
then, when it is turned back into its working position, the desired 
action commences[...] The shot passes through the funnel and issu- 
ing from its narrow end, scampers deviously down through the pins 
in a curious and interesting way; each of them darting a step to the 
right or left, as the case may be, every time it strikes a pin. The 
pins are disposed in a quincunx fashion, so that every descending 
shot strikes again a pin in each successive row. The cascade issuing 
from the funnel broadens as it descends, and, at length, every shot 
finds itself caught in a compartment immediately after freeing itself 
from the last row of pins. The outline of the columns of shot that ac- 
cumulate in the successive compartments approximates to the Curve 
of Frequency[...] and is closely of the same shape however often the 
experiment is repeated." 
(Galton (1889, p. 63ff)) 
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Figure 2: 

GMtons i l lustrat ion of the  quincunx. (Fig. 7 in Gal ton (1889, p. 63)) 

The original quincunx (see Fig. 3) can be found today at the Galton 
Laboratories,  London. The inscription by Galton reads as follows: 

"Instrument to illustrate 
The principle of the 

Law o/ Error or Dispersion 
by 

Francis Galton F.R.S. 

Charge the instrument by reversing it, to send all the shots into the 
pocket. Then sharply re-reverse and immediately set it upright on a 
level table. The shot will all drop into the f~nnel, and running thence 
through its mouth, will pursue devious courses through the harrow 
and will accumulate in the vertical compartments at the bottom, 
there affording a representation of the law of dispersion." 
(quoted according to Stigler (1986, p. 277)) 
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Figure 3: 
The original quincunx. (Fig. from Stigler (1986, p. 277)) 

Galton was confronted with a problem: He could recognize the appear- 
ance of the normal distribution in his data, but  he could not connect the 
curve with the heredity of characteristics from generation to generation. 
In some sense the classical theory of errors hindered him in his search for 
a connection. If the human characteristics follow a normal distribution, 
since they are the result of a large number of small influences, none of 
which is of outstanding importance, all of them together follow a normal 
distribution as well, how can a single factor - the parents - have a measur- 
able influence? And why does the variation of the characteristics of the 
population not increase from generation to generation? Galton was able 
to find a way out of this dilemma with his formulation of regression and 
its connection with the bivariate normal distribution. By experiment- 
ing with peas he discovered the " tendency to the middle": Children of 
small parents will on the average be taller than  their parents, children 
with very tall parents will on the average be smaller than their parents. 
In Natural Inheritance (Galton 1889) he gave a detailed description of 
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this law of regression (at first called "law of reversion"). Above all, he 
examined the conditions which cause the  law of errors. The  classical 
conditions of Laplace, the  independent  and identical d is t r ibut ion  of  the  
r andom variables, do imply that  the data  follow a normal  dis t r ibut ion,  
bu t  this condit ions were too restrictive for Galtons use. He wanted  to 
show tha t  the  su~c ien t  conditions of Laplace are not necessary for the  
normal  distr ibution.  Galton wrote: 

"Considering the importance of the results which admit of being 
derived whenever the law of frequency of error can be shown to apply, 
I will give some reasons why its applicability is more general than 
might have been expected from the highly artificial hypotheses upon 
which the law is based. It will be remembered that these are to the 
effect that individual errors of observation, or individual differences 
in objects belonging to the same generic group, are entirely due to 
the aggregate action of variable influences in different combinations, 
and that these influences must be 

* all independent in their effects 

�9 all equal 

�9 all admitting of being treated as simple alternative ,above av- 
erage' or ,below average' and 

�9 the usual Tables are calculated on the further supposition that 
the variable influences are infinitely numerous." 

(Galton (1875, p. 38)) 

and  continued: 

"[The first three of the conditions] assuredly do not occur in vital 
or social phenomena, nevertheless it has been found in numerous 
instances, where measurement was possible, that the latter conform 
very fairly, within the limits of ordinary statistical inquiry, to cal- 
culations based on the (exponential) law of frequency of errors. It 
is a curious fact, which I shall endeavour to explain, that in this 
case a false hypothesis, which is undoubtedly a very convenient one 
to work upon, yields true results." 
(Galton (1875, p. 39ff)) 

This  a rgumenta t ion  was not  wrong, but  it did not really apply to the  heart  
of the  mat ter .  I t  was decisive for Galton that  the number  of influences did 
not  really have to be infinitely numerous.  The article from 1875 contains 
a passage which is the  key to the solution of the problem. Later  Gal ton  
recognized that :  E.g.  the  intensity of light is a decisive factor for the  
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growth of fruit. If the same sort of fruit grows at different locations (e. g. 
at a southern, western and northern slope) on the average the fruit will 
be of different sizes - big, moderate and small. So why should the whole 
crop follow a normal distribution? 

"The question is, why a mixture of series radically different, should 
in numerous cases give results apparently identical with those of a 
single series [...]. Now if it so happens that the "moderate" phase 
occurs approximately twice as often as either of the extreme phases 
(which is an exceedingly reasonable supposition, taking into account 
the combined effects of azimuth, altitude, and the minor influences 
relating to shade from leaves etc.) then the effect of aspect will work 
in with the rest, just like a binomial o] two elements. Generally the 
coel~cients of (a + b) '~ are the same as those of (a + b) n-r  . (a + b) r. " 
(Galton (1875, p. 45)) 

So the growth of the fruit can be traced back on two things: one main 
influence factor and other factors. Given the main influence factor the 
other  factors follow the classical theory of errors. Let r be the number of 
interference factors, r can be very large. If the main influence factor can 
be seen as the sum of n - r interferences, (n - r) + r = n inferences result, 
al though n - r  is small. In the end the interference distribution is a normal 
distribution, even if the main influence factor is not normally distributed. 
At this time Galton was aware of the fact, that  this conclusion may not 
be drawn without further ado, but he was vague about this aspect and 
did not go into details. Later he changed his mind not at least caused by 
the quincunx. 

1.3 T h e  t w o - s t a g e  q u i n c u n x  

Galton developed a second version of the quincunx, the two-stage 
quincunx. It seems, however, that  this version has never been really 
built. Nevertheless it was an important  aid for further discoveries. A 
letter writ ten by Galton on January 12th, 1877 (see Fig. 4) is still 
existing. There he explained the two-stage quincunx to his cousin George 
Darwin. 

The question is: What happens if the runs are interrupted at some posi- 
tion on the board and the bails are caught there in compartments? The 
distribution arising should have a shape which is similar to the normal 
distribution, but  the dispersion should be smaller than the one the curve 
would have reached at the bottom of the board. 
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Figure 4: 
Galton's letter, written on January 12th, 1877 to his cousin Georg 

Darwin. (Fig. from Stigler (1986, p. 278)) 

What  happens then, if a single of the upper compartments is opened 
and the balls from this compartment run through the second part  
of the quincunx? In Galtons words a small "normal hillock" will be 
formed under the compartment concerned (see Fig. 5). And what,  if all 
compartments are opened? Each one produces a small normal hillock, 
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all together they build a hillock which can not  be told apart  from the 
hillock arising from a run  without  interruption.  

Gal ton experimented with peas and unders tood,  tha t  a data  set which 
is normally distr ibuted (e. g. the weight of the  peas) can be divided into 
smaller da ta  sets, which are normally dis t r ibuted as well. Each of the 
seven subgroups of his experiment was descended from parents having a 
certain weight; this can be unders tood as seven inter im compar tments  on 
the  two-stage quincunx (see Fig. 5, 6). 
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Figure 5: 
Drawing by Pearson for his Galton biography (Pearson (1914-1930)), 
based on Galton's original letter. (Fig. from Stigler (1986, p. 279)) 
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Galton asked why the width of the variation does not increase but  
remains constant. He came to realize that  the reason is regression. The 
weights of the descendants are normally distributed, yet the mean is not 
the weight of the parents but the mean is closer to the mean of the total 
population. 

Because of the regression the variance of the total population remains 
constant. In Fig. 6 Galton makes this visible: With  the help of the 
narrowed channels the means of the groups are brought together just  so 
far that  the variance of the total population stays the same. 

Figure 6: 
Drawing by GaJton: Two-stage quincunx and law of regression (Fig. 

from Galton (1877)). 
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However, from this point  of view there is no obvious reason why this 
regression - which is necessary for the stability - should arise. 

In  1885 Gal ton solved this problem. He collected da ta  about  the height 
of parents and adult  children. Then  he developed a formula to combine 
the  height of bo th  parents: He multiplied the  mother ' s  height with 1.08, 
added the  father 's  height and divided by two. After that  he examined 
the  coherence between the height of the  "midparents"  and the children. 

In contrast  to the peas, which were a stratified sample, now an usual 
r andom sample is analysed. The height is divided into intervals, so the 
da ta  given in the  table (Fig. 7) can be regarded as grouped normally 
dis t r ibuted data.  The children's height is normal ly  distr ibuted,  the sums 
of the  columns result in the bo t tom of the  quincunx.  Each row contains 
the  frequency distr ibution of a small normal ly  dis t r ibuted hillock, and 
the  columns (height of the midparents) indicate the  respective interim 
compar tment .  

Height  of  Tma l  Tmal  

t h e  told- Hei l lh t  o f  the  adul t  chi ld no.  o f  no.  o f  
p a r e n t  adul t  mid-  
i n i n c h z s  < 6 1 . 7  62.9 65 .9  64 .2  65 .2  66 .9  67.2 68 .2  69 .2  70 .2  71.2 72 .2  75 .2  > 7 5 . 7  ch i ld ren  p a r e n u  Medians  

> 75 .0  1 S - -  4 5 - -  
72.5 I 2 I 2 7 2 4 19 6 72 .2  
71.5 1 $ 4 $ 5 I 0  4 9 2 2 45 11 6 9 , 9  
70 .5  1 - -  I - -  1 1 $ 12 18 14 7 4 $ $ 68 22  69 .5  
69 .5  1 16 4 17 27 20 $$ 25  20 I I 4 5 185 41 68 .9  
68 .5  I m 7 I I  16 25 $1 ~lt 48  21 18 4 $ - -  219  4 9  68 .2  
67.5 - -  $ 5 14 15 $6 $8 28 $8 1 g 11 4 211 55 67.6 
66.5  m 8 $ 5 2 17 17 14 18 4 78 20 67 .2  
65 .5  ! m 9 5 7 11 11 7 7 5 2 1 66  12 66 .7  
64 .5  I I 4 4 I 5 5 - -  2 25 5 65 .8  

< 6 4 . 0  I m 2 4 1 2 2 1 I 14 1 - -  

To ta l s  5 7 92 59  48  117 1118 120 167 g 9  6 4  41 1"7 14 928  205  - -  

Medians  66 .3  67 .8  67 .9  67.7 67.9 68 .3  68 .5  69 .0  69 .0  70 .0  - -  - -  - -  

Sm,r~.. r ' ~ , , ,  (1888e). 

Figure 7: 
Galton's table from 1885: the height of  928 adult children and the 

"middle height" of the 205 parents belonging to it. When publishing it 
a g a / n / n  1889 Galton wrote that the first line is wrong, because four 

children can not have five parents but the last line (14 children from one 
family), which looks suspicious, is correct. (Fig. taken from Stigler 

(1986, p. 259)) 

Galton described the table from Fig. 7 as bivariate normal  distribution. 
This  freed h im from the strict directional relat ion which is given by the  
two-stage quincunx. Now he saw a linear coherence between the height 
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of the generations, which is disturbed by random influences on parents  
and descendants.  Two related questions helped Gal ton  to take this step: 

�9 An anthropological  question: If a single ancient bone is found, what  
does this tell about  the  height of the person it comes from? 

�9 A question in forensic medicine concerning identification: Wha t  can be 
told about the  relation between different measures of one person? 

Galton connected this questions with the problems of heredity which he 
had already solved and recognized that  these questions where special cases 
of a much more general question: the correlation. He developed a detailed 
statistical concept of correlation, which probably is the  most  famous of 
his legacies. As he said himself: 

"Few intellectual pleasures are more keen than those enjoyed by a 
person, who, while he is occupied in some special inquire, suddenly 
perceives that it admits of a wide generalization and that his results 
hold good in previous unsuspected directions." (quoted after Stigler 
(1989, p. 75)) 

Our  description essentially follows Stigler (1986, 1989). 

1 .4  T h e  G a l t o n - P e a r s o n - B o a r d  

In 1895 Karl Pearson published a modification of the  quincunx (see 
Fig. 8). Here each movable row can produce a different probabil i ty 
for deviation. Wi th  this apparatus it should be possible to produce 
skewed distr ibutions,  which do not have to be binomial  dis tr ibut ions (see 
Theorem 2.2). 

During our investigation we found several older and newer drawings of 
Galton-Pearson-Boards,  but  - in contrast to many real quincunxes in all 
variations - we know of only one Galton-Pearson-Board existing in the  
Depar tment  of Statist ics at Berkeley. 
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Figure 8: 
Illustration by Pearson: Generation of skew distributions. (Fig. from 

Pearson (1895, p. 415)) 
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2 M a t h e m a t i c a l  background 

2 . 1  G e n e r a l  o v e r v i e w  

The quincunx is a nice means to show different statistical laws. The 
normal distribution, however, is not as evident as is often implied in 
the literature. There are some considerations necessary to see why 
an approximate normal shape appears in a large quincunx. We list 
the single steps in this section, which is followed by a more detailed 
mathematical  derivation in section 2.2. 

B i n o m i a l  d i s t r i b u t i o n .  For one ball the probability to fall into a 
certain compartment  is according to the binomial distribution. 

S t r o n g  law of  l a rge  n u m b e r s .  If there axe very many bails to roll 
down the quincunx, it follows from the law of large numbers that  the 
proportion of balls in a given compartment converges to a constant, 
which depends on the compartment (see Fig. 9, see also Theorem 2.1). 

lol 
�9 �9 �9 

0,2% 1% 7% 16% 2~4J 2:5% 16% 7% 1% 0,2% 

Figure 9: 
Binomially distributed balls. 
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A series of boards: Imagine a series of quincunx boards gett ing larger 
and  larger by adding new rows of nails. Let the number  of balls be 
large but  constant.  Then  the balls are dis t r ibuted into more and more 
compar tments ,  the number  of balls in each compar tmen t  converges to 
zero. 

Combina t ion  of compartments  in a series of boards: Let us group the 
compar tmen t s  of the above series of boards,  such tha t  the number  f of 
compar tments  remains constant and all compar tments  have the same 
width.  Then,  as the number  of rows increases, the propor t ion of balls 
to roll in the  middle compar tment  increases (see the  proport ions in Fig. 
10 in comparison with Fig. 9). Finally, wi th  ever increasing number  of 
rows, all balls go into the middle compar tment .  

Figure 10: 
Increasing number  of  nail rows. 
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I n t e g r a l  L i m i t  T h e o r e m  Once more, let the number  m of rows of nails 
increase. This  t ime we let the number  f of compar tments  also increase, 
but  not as fast as m. We assume that  f is given by the formula 

f = )~v/m, where A is a constant.  

Let x be a fixed integer. If the number  n of balls is kept constant ,  then,  
with increasing rn, the  proport ion of balls in compar tment  [ 2/-~] • x 
( that  is the  x t h  compar tment  seen from the middle) converges against  a 
quant i ty  given by the normal  distribution. However, only if the  number  
f of compar tmen t s  is large (and, consequently, the number  m of rows is 
very large) a bell curve results. 

This is the  Central  Limit  Theorem. In the case of the binomial  distr ibu- 
tion it is also called the Integral Limit Theorem (see Theorem 2.4). 

Local  L i m i t  T h e o r e m .  Another  possibility is not to group the  com- 
par tments  bu t  to increase the number  n of balls together with the  number  
m of rows, following the formula 

n = v/-~. 

So we assume tha t  the number  of compar tments  is m + l .  Let x be a given 
integer. T h e n  the  fraction of balls in compar tment  [2/~] • x converges to 

a fixed number ,  which is proport ional  to e -x2/2. Here really a bell form 
arises. This  is the  Local Limit Theorem (see Theorem 2.3). If the  number  
of balls is increasing at a faster rate than  V ~ ,  then the percentage of 
balls in the  x th  compar tment  (seen from the middle) converges to infinity. 

C o n c l u s i o n :  The form of a s tandard  normal distr ibut ion is not  really 
easy to see. 

2 .2  M a t h e m a t i c a l  m o d e l s  

A ball rolling down a quincunx as shown in Fig. 11 when passing th rough  
row i will ei ther deviate to the right (with probability pi )  or to the  left 
(with probabi l i ty  1 - p i ) .  In all, n balls are used and are collected in m +  1 
compar tments  F k ,  k = 0 , . . .  , m .  
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Figure 11: 
Quincunx notations. 

For ball j ,  1 _< j < n, let the random variable Yij describe the behaviour 
of the  ball at row i: 

1 , if the ball moves to the  right 
Yij --- 0 , if the ball moves to the  left. 

T h e n  P(Yij = 1) = Pi and P(]~j  = 0) = 1 - P i  and Yij corresponds to 
the  outcome of a Bernoulli-experiment with probabil i ty of success of Pi. 
Note tha t  the  probabili ty is the same for every ball j .  

Now, if a ball j has completed a run, then  the  sum of the  I~j determines 

the  compar tment  in which it lands. More precisely, if--X} m) = "number  
of the  compar tment  in which ball j ends",  then  

m 

XJ m) = ~ Yi3. 
i=1 

If the  ball always moves to the left, then it ends in compar tment  0. If it 
moves to the  right exactly k times, then it ends in compar tmen t  k. 

This  identity will be used later on to determine the  probabil i ty distribu- 
t ion of X~ m) for the s tandard  quincunx (all P i - -  21-) �9 

T h e  s t r o n g  l a w  o f  l a rge  n u m b e r s .  The  first law to be seen from the 
quincunx is the  strong law of large numbers.  (Some considerations can 
be found in v. Mises (1931, pp. 144-146)) 
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Theorem 2.1 (Strong law of large numbers) 
For a sequence of i.i.d, random numbers Xi, i = 1 ,2 , . . .  , n  with expec- 
tation E(Xi) = p, the  empirical mean converges a.s. to the  expectation 
#. More formally 

) - X i = #  = 1 .  
n---~c~ ?2 i = 1  

P r o o f :  see e.g. Gnedenko (1968, p. 253ff) [] 

To apply Theorem 2.1 let us introduce a third random variable ~Z~ 'n'k) 
which indicates whether  the  ball j falls into compar tment  k, or not.  T h a t  
is 

z}m'k) = { 0,1' ifelse. X}m) = k 

1 E~=I ZJ re'k) is the proport ion of balls to go into the  k t h  Then  

compar tment .  L e t  Z~ re'k) take the role of the Xi in Theorem 2.1. 

Since the probabili t ies Pi, 1 < i < m, are the same for every ball, we 

have for every ball the  same probability ~r (m) to go into c o m p a r t m e n t  k. 

Therefore, for every j we have that  P(Z~ re'k) -- 1) = ~r (m) is t he  same. 

Then  the s trong law of large numbers implies tha t  

?'t 

72 j = l  
a s  n --~ (:x3 

Therefore, by varying k, the (theoretical) dis tr ibut ion of  t he  r a n d o m  

variable --X~ m) can be approximated by the observed p ropor t ion  of balls 
in the different compar tments ,  provided a snfficiently large n u m b e r  of  
balls is used. 

The standard q u i n c u n x .  If all pi = P (equal probabili t ies at each row) 
then it follows from the remarks above, that  

P(X} m) = k ) = P  Y / j = k  = p k ( l _ p ) m - k ,  
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since there are exactly (~) different ways to fall through the quincunx, 
where the ball turns to the right exactly k times. The probability to turn 
to the right exactly k times (and to the left exactly (m - k) times) is 

pk(1 _ p)m-k .  Therefore X~ m) is binomially distributed with parameters 

m and p, 

XJ m) ~ B ( m , p ) .  

For the s tandard quincunx the probability for ball j to turn to the left or 

to the right is equal, p -- 1, at each row. Consequently, X~ m) ,~ B ( m ,  l ) .  

G a l t o n - P e a r s o n - B o a r d .  By the movable rows of the Galton-Pearson- 
Board different probabilities Pi can be derived for each row i. This will 

distribution of the X~ m) which need not be a binomial distribu- lead to a 

tion. In fact, we now show that the distribution of the --XJ m) is a binomial 

distribution if and only if all Pi are the same. 

T h e o r e m  2.2 
I t  holds: 

3 p s u c h t h a t X ~  m) ~ B ( m , p )  r Pi = p V i  = 1 , . . .  ,m .  (1) 

P r o o f :  
The  other direction can be seen, if it is assumed that  

XJ m) ..~ B (m, p). 

It  follows tha t  for every k 

The  direction " ~ "  has been shown in the last paragraph. 

P Yij = k = P m) = k) = pk(1 _ p)n-k  

and  especially for k = m, that  

Since 

p m = p  j = m  . 

Yij = m  = P(Yi j  = I V i =  I , . . .  , m )  = pi, 
i=1  

P 

(2) 
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it follows tha t  

P = Pi , 
\ i = 1  / 

the geometric mean of the  Pi. It is well-known that  the  geometr ic  mean  
is less or equal to the ar i thmetic  mean 

( f i  ] l / rn  1 
P = Pi <~ - -  Pi 

\ i = l  / m i=1  

(see e.g. Kendall  and Stuar t  (1969, p. 36)). 

Therefore, 

1 m 
P <  - -  Y~Pi- (3) 

m i=1  

On the other hand,  if k = 0 in (2), it follows with the same a rgumen t s  
tha t  

1 - p  = 1 - p i  

and tha t  
m 1 m 

l - p <  - 1  - = 1 - - ( 4 )  
m m 

i=1  i=1  

Consequently, combining (3) and (4), 

m 
1 

P 
m 

i = l  

and the geometric and ar i thmetic  mean coincide. 
tha t  all p / a r e  equal. 

Therefore it follows 
[] 

D r i f t .  It  appears  plausible that  a ball which has moved to the  right 
in one level has a higher probabili ty than  �89 to move to the  r ight  again 
in the  next  level. Such a phenomenon  would destroy the a s s u m p t i o n  of 
independence and therefore the binomial distribution. (It is one of  the  
ma in  difficulties in construct ing a quincunx, to try to avoid th is  depen-  
dence to happen.)  Some theory to this can be found in v. Mises (1964, 
pp. 288-289). 
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2 .3  C o n v e r g e n c e  in  d i s t r i b u t i o n  

The  approximation of the binomial distribution by the normal distribu- 
t ion can not easily be shown by the quincunx (see section refmathall). 
Mathematical ly it is based on the limit theorems of de Moivre-Laplace 
which describe the local and the global approximation of the binomial dis- 
t r ibut ion by the normal distribution. Some similar considerations were 
done by v. Mises (1931, pp. 144-146). 

T h e o r e m  2.3 (Local Limit  T h e o r e m )  
Consider a sequence (X (m)) of  random variables where X (m) ~ B(m,p)  
and let (kin) be a sequence of  numbers in No with 

lim km - m p  = x .  

m-~oo X/mp(1 _ p) 

Then we have for m --~ oo 

P ( X  (m) =kin)  
1 (5) 

~/(m + 1)p(1 - p )  

in the sense that  the ratio of  the 1.h.s. and r.h.s, converges to 1. Here 
~o(x) is the density function of  the standard normal distribution. 

Proof :  see Gnedenko (1968, p. 94ff) [] 

T h e o r e m  2.4 ( I n t e g r a l  L i m i t  T h e o r e m )  
Let  (I)(x) be the distribution function of  the standard normal distribution. 
If, additionally to the conditions of Theorem 2.3, the sequence of  numbers 
(lm ) in No fumUs 

Im- ~p 
lim = y > x 

then 

lira P (kin <_ X (m) < l m )  = •(y) - (~(x). 
m - - ~  o o  

P r o o f :  see Gnedenko (1968, p. 104if) [] 
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For the quincunx this means that  the probability for one single compar t -  
ment  

as well as the  probabil i ty for several compar tments  

P (X~ m) E {a,a + l , . . .  ,a + k})  , 

with {a,a + l , . . .  ,a + k} c {O,... ,m} 

can be approximated  with the help of the normal dis tr ibut ion.  I t  is 
decisive, however, that  the goodness of this approximation can only be 
improved, if the number m of rows increases. 

In other  words: A given quincunx (m fixed) will yield an increasingly 
bet ter  fit to the  binomial  distribution, if the number n of balls increases, 
but  will not  take a "smoother" shape in sense of a bell curve. 

G a l t o n - P e a r s o n - B o a r d .  If different pi are allowed, then a more  gen- 
eral theorem is needed: the Theorem of Lindeberg-Feller. 

T h e o r e m  2.5  ( L i n d e b e r g - F e l l e r )  
Let X (m) be as in Theorem 2.1. Then 

) X (m) ~ Jkf Pi, pi(1 - pi) 
k i = l  i=1 

~=~ ~ pi (1 - Pi ) diverges. (6) 
i = l  

Proof :  see e.g. Gnedenko (1968, p. 318). [] 

The  nota t ion  X (ra) ~Y Af(~m, 52) means that  the dis t r ibut ion of  

X ( m )  _ ~.~ 
~m 

converges weakly to the Af(0, 1), where ~m and 5m are sequences of 
constants.  It  is not necessary that  ~m and 52 m are the mean  and  the  
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variance of X (m), see e.g. Serfling (1980, p. 20). 

So the  asymptot ic  behaviour of the quincunx depends  on the structure of 
the  deviation probabilities pi. In the special instance tha t  all Pi are equal 
to a number  p, we have 

Er~ 

Sin= E p i ( 1 - p i ) = m p ( 1 - p )  ~ oc, 
m--.+ c o  

i----1 

so tha t  condition (6) is fulfilled. Therefore the  Integral  Limit Theorem 
2.4 is a special instance of Theorem 2.5. 

I t  is clear that ,  if there is an mo such tha t  Pi =-- 0 for all i > mo, then 
Y'~i=l - Pi) =Y'~4=l - Pi) for all m >_ too. It then  also holds that  

X (m) is not asymptotical ly normal as all X} m) for rn >_ rno have the  
(,no) same distr ibut ion as X} . 

There  are also situations when all Pi E (0,1), bu t  Y'~i~=lpi(1-Pi) 
converges and therefore X} m) is not asymptotical ly normal.  

1 �9 As an example for tha t  consider Pi = ~', z E N. T h e n  for every m we have 

an d  

X} m lm--1 1 ~  1 1--  (1~m _ ( 1 ) m < 1  
E i 

i=1 "= 

?n m 

i----1 i : 1  i----1 

m <E(1)/=l-(1)m<l. 
i--1 

Remember  that  ~X} m) is a random variable with nonnegative integer val- 
ues. Therefore, 

P(X}  m) E {0,1,2,3}) = P((X}  m) <_ 3 ) =  

X (m) E X  (m) 3 - -  EX~ m) 
p (  i _ _ _ _ - ~  < _ _ _ _  - ) 
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(,n) (m) 
x '  - E X '  3 -  1 

>- P(I X}m) - EXjm) 
l~2). 

By Tchebycheff 's inequali ty (see e.g. Kendall and Stuar t  (1969, p. 88)), 

we conclude tha t  P (  m) E {0, 1,2,3}) > ~. 

3 Therefore, the  fixed finite set {0,1,2,3} has a probabil i ty of more  t han  

for every m. This  implies that  X} m) is not asymptotical ly normal.  

3 The quincunx in practice 

For didactic reasons diagrams of quincunxes can be found in popu la r  
and scientific statist ical  books and articles, in textbooks of statist ics for 
the humanit ies  and economics, for engineers and natural  scientists as 
well as in school books for middle and upper  schools, sometimes even for 
pr imary schools. As audiovisual aids some schools and universities have 
a self- or professionally-made quincunx. 

Not all of the  existing quincunxes do work properly. On the  contrary,  
it is quite difficult to produce a good quincunx. The  nails have to be 
driven in exactly, an addit ional  row of nails at the  margins is necessary. 
The balls must  be of equal size and weight, they must  be smaller  t h a n  
the space between the  nails, but  they may not be "too" small.  If  the  
quincunx is closed, the  funnel must  be big enough to contain all balls. 

As simple as a drawing of a quincunx seems to be, there are m a n y  
inaccuracies and mistakes in  illustrations of the quincunx publ i shed  in 
the literature. Especially dubious in some publications is the  emphas is  
of the normal  d is t r ibut ion  under neglect of the binomial  d is t r ibut ion,  
even though  a binomial  distr ibution actually is produced.  For more  
details about  this and  for a detailed bibliography see Kuner t ,  Montag,  
PShlmann (2000). 
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